
Getting your Ducks in a Row i

Getting your Ducks in a Row



Getting your Ducks in a Row ii

Contents

1 Getting your Ducks in a Row 1

2 What Are You Gonna Learn Today? 1

3 Manfred Moser 1

4 Data Sources 1

5 Research Reports 1

6 How We Develop Today 2

7 So What is a Component? 2

8 What is a Component? 2

9 Guess. . . 2

10 Estimate. . . 2

11 Software Supply Chain 3

12 Software Supply Chain Management 3

13 So what do you think. . . 3

14 Supply Chain Best Practices 3

15 Best Practice: Select Suppliers Carefully 4

16 Best Practice: Communicate with Suppliers 4

17 Best Practice: Support Suppliers 4

18 Best Practice: Reduce Vendors 5

19 Now that. . . 5

20 Public Repositories 5

21 Example: Central Repository 5

22 Best Practice: Control Component Source 6

23 Guess. . . 6



Getting your Ducks in a Row iii

24 Sonatype Nexus as Central Hub 6

25 Repository Management with Nexus OSS 6

26 Best Practice: Know Your Components 7

27 Best Practice: Know Their Dependencies 7

28 It’s Not Easy 7

29 Best Practice: Avoid Duplication 7

30 Best Practice: Reduce Their Numbers 8

31 Room for Improvement 8

32 What About Component Versions . . . 8

33 Guess. . . 8

34 Excursion to DevOps 8

35 Best Practice: Upgrade Regularly 9

36 Guess . . . 9

37 How do Companies React? 9

38 Best Practice: Know Security Characteristics 9

39 Security Tools 10

40 Similar Problems with Licenses 10

41 Best Practice: Understand License Implications 10

42 What now? 10

43 Define What We Want 10

44 Problems with Policies 11

45 Let’s automate this! 11

46 Aim of Tools 11

47 Example: Sonatype Nexus and Nexus Lifecycle 11

48 Sonatype Nexus Lifecycle 12



Getting your Ducks in a Row iv

49 Summary 12

50 The End 12

51 Resources 12

52 Disclaimers 13



Getting your Ducks in a Row 1 / 13

1 Getting your Ducks in a Row

images/ducks_in_a_row.jpg

An Introduction to Managing Components in your Software Supply Chain

Manfred Moser - #simpligility - www.simpligility.com

Sonatype - www.sonatype.com

2 What Are You Gonna Learn Today?

• Interesting facts and figures

• A new perspective about your development efforts

• Simple steps for improvements

3 Manfred Moser

• Author - The Hudson Book, Maven The Complete Reference, Repository Management with Nexus

• Presenter - OSCON, JavaOne, AnDevCon, . . .

• Trainer - Apache Maven, Sonatype Nexus, . . .

• Community Advocate - with Sonatype

• Developer - Commodore 64 onwards

• Open source hacker - Apache Maven, Android Maven Plugin, . . .

4 Data Sources

• Central Repository usage statistics

– A.k.a. Maven Central

– Largest binary repository - http://search.maven.org/#stats

– Running for 10+ years

– Sponsored and managed by Sonatype

• Sonatype Nexus usage statistics

– Most commonly used repository manager

– >50k installations

5 Research Reports

• 2011-2014 Open Source Software Development Survey

– >11k responses

• 2015 State of the Software Supply Chain Report

http://twitter.com/simpligility
http://www.simpligility.com
http://www.sonatype.com
http://search.maven.org/#stats


Getting your Ducks in a Row 2 / 13

6 How We Develop Today

• Use components as building blocks

• Enjoy power of reuse and collaboration

• Software stack doesn’t matter - all use components

• Open source FTW everywhere!

7 So What is a Component?

Frameworks, Libraries, . . . Plumbing you don’t want to write yourself. Like Logging, IoC, persistence layer, ORM,
widgets,. . .

You get them easily by declaring dependencies with Maven, Gradle, nuget, npm. . .

8 What is a Component?

Third party components AND everything you create

• JARs, WARs, EARs..

• rpm, deb

• npm, nupkg, gem packages

• zip, tar.gz files

• installer packages, docker images

• . . .

9 Guess. . .

What is the percentage of components in a typical application?

Tip
80-90% - so components are very important

10 Estimate. . .

How many components can be found in an average application?

Tip
More than 100 !



Getting your Ducks in a Row 3 / 13

11 Software Supply Chain

Tip
Writing applications is assembling components!

Just like for traditional manufacturing

• Understand complete inventory of your product

• Including origin (suppliers)

• And usage

12 Software Supply Chain Management

Components are integral part of Software Development Life Cycle (SDLC)

It is an endless circle of activities:

• Research what components to use

• Implement usage

• Check in QA and release process

• Monitor in production

• Go back to the start

13 So what do you think. . .

When do software supply chain management efforts stop?

Tip
When all production deployments are turned off!

Warning
Not when development stops.

14 Supply Chain Best Practices

• Better and fewer suppliers

• Higher quality parts

• Improved visibility and traceability



Getting your Ducks in a Row 4 / 13

15 Best Practice: Select Suppliers Carefully

Warning
Open source projects are your suppliers!

• Large or small project

• Active or inactive in terms of commits

• Foundation backed or stand alone project

• Commercial company backing or not

• Active community and support

Tip
Demo - check forks, followers and committers on Github!

16 Best Practice: Communicate with Suppliers

• Most often open source project

• Report bugs and feature requests

• Help with documentation

• Be present on mailing lists, forums, IRC, . . .

• Attend events

Tip
Don’t be typical passive consumer only! Talk about tfs-plugin. . .

17 Best Practice: Support Suppliers

• Promote project via presentations, . . .

• Become a committer

• Sponsor a committer

• Provide infrastructure

• Sponsor foundations

• Pay for support

Tip
Example Ricardo Gladwell working on M2e-Android

https://github.com/simpligility/android-maven-plugin/graphs/contributors
https://www.patreon.com/rgladwell?ty=h


Getting your Ducks in a Row 5 / 13

18 Best Practice: Reduce Vendors

Each additional vendor

• Adds integration complexity

• Adds communication channels

• Add need for tracking

• Add new APIs to learn

• Adds license terms to understand

• . . .

Tip
So having less is easier.

19 Now that. . .

We know that we use lots of components

Warning
Where do we get them from?

20 Public Repositories

Very important as warehouses/distributors in their eco-systems

• JVM - Central Repository - 17B downloads in 2014

– up from 500 M in 2007

• JavaScript/Node - npmjs.org - 15B downloads in 2014

• Ruby - rubygems.org - 5B downloads since inception

• .Net - NuGet Gallery - 300m downloads in 2014

21 Example: Central Repository

• Approx. 1 Million open source components

• Approx. 11 Million users

• 1000 new components added daily

• Exponential growth

Tip
Growth of other repositories is similar.

http://www.modulecounts.com/


Getting your Ducks in a Row 6 / 13

22 Best Practice: Control Component Source

Tip
Run your own local warehouse!

• Reduced bandwidth usage and costs

• Improve performance and stability

• Internal caching and storing of components → enables collaboration

• Reduced dependency on external repositories

• One component storage location for backup, audit, control. . .

• Store your own components centrally

→ Use a repository manager!

23 Guess. . .

Are people following this easily implemented best practice?

No!

• 95% of downloads from Central Repository → build tools,. . .

• Only 5% via repository manager

• 18 % of respondents to component survey use no repository manager

24 Sonatype Nexus as Central Hub

images/nexus-tool-suite-integration.png

→ Nexus is a key component of your enterprise development infrastructure

25 Repository Management with Nexus OSS

• Used by 64% of repository manager users

• Formats include Maven, NuGet, NPM, site, Yum and Gems

→ Way better than manual management or ignoring the need

Important
Yet easy to implement. . . and open source!



Getting your Ducks in a Row 7 / 13

26 Best Practice: Know Your Components

Now that you optimized getting components. . .

• Look at your build files

• Crack open the deployment archive

• Identify with checksum search

Warning
You will be surprised what you find!

27 Best Practice: Know Their Dependencies

• mvn dependency:tree or similar analysis

• Use Dependency Management or BOM POM

• Dependency Hierarchy in M2Eclipse or Nexus Pro

Challenge yourself to produce a Bill of Materials

Tip
Demo time!

28 It’s Not Easy

Bill of Material - tracking production applications

• 37% no tracking

• 23% incomplete tracking (not including dependencies)

• 40% complete tracking

Or so they think.

29 Best Practice: Avoid Duplication

• Multiple logging frameworks

• Multiple web frameworks

• Multiple technology stacks

Tip
But still - don’t be afraid of using what is best for the job. Find the right balance.



Getting your Ducks in a Row 8 / 13

30 Best Practice: Reduce Their Numbers

• KISS

• Less complexity

• Less learning effort

• Less tracking updates, issues, communication, . . .

Warning
You are responsible for all components used in your application!

31 Room for Improvement

Sonatype Application Health Check analysis of 1500+ applications

• On average 106 components

• 24 with known vulnerabilities

• 9 with restrictive licenses

32 What About Component Versions . . .

From the Top 100 components downloaded from the Central Repository - how many are old?

Tip
27 or about a third are out of date!

Not too surprising, since a typical component has 3-4 releases per year.

33 Guess. . .

How many versions of each library are used at Google?

Tip
One or two are mandated in most cases!

34 Excursion to DevOps

One critical part of DevOps - Release Early, Release Often! Iterate Faster!

Why?

• Bring benefits of new features to users as soon as possible

• Enable tighter user involvement

• Fix bugs as soon as possible

• Reduce complexity of changes

https://en.wikipedia.org/wiki/KISS_principle


Getting your Ducks in a Row 9 / 13

35 Best Practice: Upgrade Regularly

Just like release often - upgrade component versions often!

• Reduces complexity of updates

• Access latest features

– Open source projects work on master
– Latest release - latest features and fixes
– Sometimes you will get burned with regressions

• Access latest security fixes

– Back ports are very rare

• Easiest to report issues and receive fixes

And just like in DevOps

→ The more often you release(upgrade), the better you get at it.

36 Guess . . .

An average large enterprise downloads about 250k components from the Central Repository per year.

How many have known security vulnerabilities?

Tip
Approximately 15k!

Some of them are running in production right now. . .

37 How do Companies React?

• About 50k components with known security vulnerabilities in Central Repository

• 1 in 16 components downloaded included known security vulnerabilities in 2014

• 16% must prove they are not using known security vulnerabilities

• New vulnerabilities are found regularly

• Yet 63 % do NOT monitor for changes in vulnerability data

→ Lip service mostly or struggling.

38 Best Practice: Know Security Characteristics

Research is very difficult, laborious task

• Follow mailing lists

• Monitor security databases

• Figure out specific versions affected

• Assess impact

• Never stops



Getting your Ducks in a Row 10 / 13

39 Security Tools

Some free:

• OWASP dependency check

Various commercial

• Nexus Pro

Tip
Demo time!

40 Similar Problems with Licenses

• 63 % of respondents have incomplete view of license risk from components

• Only 32 % examine all open source components for license compliance

• 58 % say they are not concerned about license risk

BUT

Approx. 280k components in Central Repository have restrictive licenses.

41 Best Practice: Understand License Implications

Similar to security issue - laborious and difficult task

Tip
Tools to the rescue

42 What now?

Follow DevOps ideas again..

• Define what we want to do

• Automate

• Monitor

43 Define What We Want

Define policies e.g.

• No components older than 5 years

• No components with known security vulnerabilities of score >= 7

• No GPL licensed components

https://www.owasp.org/index.php/OWASP_Dependency_Check


Getting your Ducks in a Row 11 / 13

44 Problems with Policies

• Only 56 % have policies

• Of these only 68% follow policy

• Often manual, slow

• But 78% say they have never banned a component

→ Things do not add up, too painful to work with.

Tip
Finding agreement on policies can be hard too!

45 Let’s automate this!

Once you agree on a policy. . .

• Add tools to automate the process

• Configure tools with policies

46 Aim of Tools

1. Empower developers with the right information at the right time

2. Design frictionless, automated approach for continuous DevOps processes

3. Create, manage and monitor component bill of materials for each application

→ More and more tools for different stacks are emerging!

47 Example: Sonatype Nexus and Nexus Lifecycle

• Security vulnerability data

• License data

• Age and popularity component info

• Configurable component policies

• Notifications

• Access control

• Policy compliance dashboard



Getting your Ducks in a Row 12 / 13

48 Sonatype Nexus Lifecycle

Expands Nexus

• Manual analysis via web interface upload

• Eclipse IDE integration

• Continuous Integration Server Jenkins/Hudson/Bamboo support

• SonarQube support

• Command line scanning

Tip
Hopefully we have time for a demo. . .

49 Summary

• Your code is only part of your application

• Components are important

• Apply software supply chain thinking

• Easy to start with

• Powerful tools available

Tip
Don’t wait!

50 The End

Questions, Remarks & Discussion

Tip
Slides on OSCON site, http://goo.gl/cZ04Is or email manfred@sonatype.com now

51 Resources

• 2014 Open Source Software Development Survey Results

• 2015 State of the Software Supply Chain Report

• Sonatype slides

• The Nexus Community

• www.sonatype.com

• Repository Management with Nexus

http://goo.gl/cZ04Is
mailto:manfred@sonatype.com
http://www.sonatype.com/about/2014-open-source-software-development-survey
http://www.sonatype.com/speedbumps
http://www.slideshare.net/SonatypeCorp
http://nexus.sonatype.org/nexus
http://www.sonatype.com/
http://links.sonatype.com/products/nexus/oss/docs


Getting your Ducks in a Row 13 / 13

• Application Health Check

• modulecounts.com

• Java Tools and Technologies Landscape for 2014

• Nexus related slides including this one. . .

52 Disclaimers

Image sources:

• Ducks in a Row from wikimedia

http://www.sonatype.com/assessments/application-health-check
http://www.modulecounts.com/
http://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-for-2014/
http://sonatype.github.io/nexus-presentations/
https://commons.wikimedia.org/wiki/File:Ducks_in_a_row.jpg

	Getting your Ducks in a Row
	What Are You Gonna Learn Today?
	Manfred Moser
	Data Sources
	Research Reports
	How We Develop Today
	So What is a Component?
	What is a Component?
	Guess…
	Estimate…
	Software Supply Chain
	Software Supply Chain Management
	So what do you think…
	Supply Chain Best Practices
	Best Practice: Select Suppliers Carefully
	Best Practice: Communicate with Suppliers
	Best Practice: Support Suppliers
	Best Practice: Reduce Vendors
	Now that…
	Public Repositories
	Example: Central Repository
	Best Practice: Control Component Source
	Guess…
	Sonatype Nexus as Central Hub
	Repository Management with Nexus OSS
	Best Practice: Know Your Components
	Best Practice: Know Their Dependencies
	It's Not Easy
	Best Practice: Avoid Duplication
	Best Practice: Reduce Their Numbers
	Room for Improvement
	What About Component Versions …
	Guess…
	Excursion to DevOps
	Best Practice: Upgrade Regularly
	Guess …
	How do Companies React?
	Best Practice: Know Security Characteristics
	Security Tools
	Similar Problems with Licenses
	Best Practice: Understand License Implications
	What now?
	Define What We Want
	Problems with Policies
	Let's automate this!
	Aim of Tools
	Example: Sonatype Nexus and Nexus Lifecycle
	Sonatype Nexus Lifecycle
	Summary
	The End
	Resources
	Disclaimers

